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Abstract

Human memory has poor performance in everyday tasks. A framework based on efficient
compression, rate-distortion theory, posits that memory systems are optimized to store infor-
mation given limited resources. It addresses the trade-off between resource constraints and task
performance. In this essay, I first illustrated that human memory is lossy compression. Then
in the second part, I introduced framework of rate-distortion theory and its implementation
based on artificial neural network. In the third part, I showed the principles of memory and
how environmental and cognitive factors shape them using this framework. In the final part, I
discussed about further adaptation of rate-distortion theory on neuroscience and other cognitive
processes.
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Figure 1: Can you remember everything all at once?

1 Introduction
Memory is not a perfect reproduction of the past. When studying for an exam, your brain en-
codes a massive amount of information and prepares for memory retrieval. However, our memory
system is capacity-limited: a finite physical storage medium with limited bits cannot remember
everything all at once (Bates and Jacobs, 2020). Thus, information is often compressed during en-
coding by discarding redundancy and reducing the precision of unimportant parts (Nagy et al., 2020).

For instance, look at figure 1 for 10s. Now, here are two memory test questions: Q1. What
is the text in the center of the figure? Q2. How many googly eyes are there? You might find Q1
relatively easy. While the absolute majority might find Q2 is an impossible mission, because our
memory is lossy compression of reality (Nagy et al., 2020). Spending 2MB to encode a chaotic
image in 10s is unreasonable for our brains. Therefore, our memory system summarized it as the
title and filtered chaotic background, such as googly eyes.

Memory is optimized to store information precisely, subject to the constraints of limited mental
resources (Gershman, 2021). This optimization problem can be formalized using rate-distortion
theory (RDT), which focuses on the trade-off between storage cost and memory performance (Bates
and Jacobs, 2020; Sims, 2016; Nagy et al., 2020). We will start with the theoretical framework of
RDT.

2 Theoretical framework
As illustrated by Figure 2A, we can consider memory as a communication channel, including
encoding and decoding (Lai and Gershman, 2021; Gershman, 2021). For encoding, sensory input is
stored and transferred to memory. For decoding, the information is retrieved from memory and
transferred to the output. The goal is to keep information from input during these two processes.

Before jumping to a solution, let’s consider the definition of information and how to measure
it. These questions are well addressed by information theory (Shannon, 1948). An information
source generates an input signal x as a random variable. Given a specific value x0, the larger the
probability p(x = x0), the less surprising it is. Therefore, the ’surprise’ of signal x0 can be defined
as log p(x = x0). Considering all possible values, we get the expectation of surprise in this signal,
which is entropy (Shannon, 1948). Entropy describes the average amount of ’surprising information’
contained in a random variable.

H(x) = −
∑
i

P (xi) logP (xi)
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Figure 2: Theoretical framework of RDT. (A) Memory as a communication channel. An input
stimulus sampled from a distribution is encoded into a memory trace by perception systems. During
retrievial, a probability distribution is generated based on the memory trace, and output is sampled
from the distribution. The distortion denotes the loss function of input and output. (B) Mutual
information of input and output. H(X) and H(Y ) indicate the entropy of input and output.
H(X|Y ) and H(Y |X) denote the information entropy carried by input and output exclusively.
While I(X;Y ) shows the information shared by input and output. (C) The rate-distortion curve.
The blue line indicates the rate-distortion curve. Channels on the curve are efficient, given their
resource constraints. Channels in the green area above the curve are inefficient and have better
performance by optimization. The grey area below the curve is unachievable.

How do we measure the information conveyed by a communication channel? Intuitively, we
want the information from input and output to overlap as much as possible and reduce the loss
of information in input and noise-induced uncertainty in output (Figure 2B). The overlap area,
known as mutual information, can be defined as equation below:

I(x, y) = H(x)−H(x|y) =
∑
i

∑
j

P (yj |xi)P (xi) log
P (yj |xi)

P (yj)

2.1 RDT on memory
It is easy to define a perfect memory channel where the output and input are the same. However, a
channel in practical settings can rarely achieve perfect performance. There is always distortion
between input and output. To this end, it’s necessary to define a cost function, L(x, y). This
function specifies the cost as the difference between an input signal value and its corresponding
output, which means that the lower the cost, the better the performance. Therefore, the distortion
of the channel, D, can be defined as the expectation of cost over all input and output:

D = E[L(x, y)] =
∑
i

∑
j

L(xi, yj)P (yj |xi)P (xi)

Rate-distortion curve: Given capacity constraints, when the distortion is minimized, the
model achieves the best performance. Changing capacity constraints results in varying distortion.
Therefore, we can draw the minimal distortion as a function of constraints, which is known as
rate-distortion curve (Figure 2C). The area below the curve is impossible to achieve given the current
setting, while the area above it is sub-optimal, which means it would be possible for models/human
subjects in this area to improve their performance on reconstruction without increasing channel
capacity.

The efficiency index: The efficiency of the channel is based on the capacity constraint and
optimization level. We can evaluate the efficiency of a channel as Equation 4, where Demp reflects
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the empirical distortion of this channel, Dmax is the maximum distortion (the point where the
rate-distortion curve intercepts the x-axis, or equivalently the optimal guessing performance), and
Dmin is the minimal distortion a channel can achieve given same information rate.

ϵ =
Demp −Dmax

Dmin −Dmax

2.2 Variational autoencoders
Can we build a model to implement RDT? Although there are already many algorithms for
compression, contrary to perception and memory in biological systems, they are:

• not designed to adapt over time to new input distributions,

• not capable of capturing the uncertainty of encoding and decoding, and

• lacking varying loss function or the capacity.

Development in machine learning addresses our needs quite well. Autoencoder, a special artificial
neural network, was invented to reconstruct high-dimensional data using a neural network model
with a bottleneck layer in the middle (Hinton and Salakhutdinov, 2006). A recent development of
it is variational autoencoders (VAE), which map input into a distribution instead of a fixed vector
(Kingma and Welling, 2014).

A VAE consists of three components, encoder, sampler, and decoder (Figure 3). The first two
parts map each input xi to a probability distribution p(zi|xi) over latent variables and sample
a latent vector zi from the distribution. The decoder takes zi as input and reconstructs yi based on it.

In order to reconstruct y that looks like a real input x from distribution of z, we need the
probabilistic decoder pθ(x|z) to maximise pθ(xi) =

∫
pθ(xi|z)pθ(z)dz. However, it’s extremely

computationally expensive to marginalize over latent variable z. We could find a solution the other
way around by introducing a new approximation function qϕ(z|x), which should be very close to
the real likelihood distribution pθ(z|x). We can use Kullback-Leibler divergence to quantify the
distance between these two distributions as DKL(qϕ(z|x)||pθ(z|x)). Using Variational Bayesian
methods, the aim of minimizing DKL can be realized by maximizing the evidence lower bound
(ELBO).

Ez∼qϕ(z|x)(logpθ(x|z))−DKL(qϕ(z|x)||pθ(z))

ELBO includes two terms. The first one penalizes low reconstruction quality and is referred to
as the distortion function. The second one, capacity constraint, encourages high efficiency in
latent encoding and constraints capacity of latent space. The negation of the ELBO defines the
loss function of VAE.

LV AE(θ, ϕ) = −Ez∼qϕ(z|x)(logpθ(x|z)) +DKL(qϕ(z|x)||pθ(z))

β-VAE: The structure of the loss function allows us to manipulate the capacity of latent space
by introducing a scalar multiplier β as a hyper-parameter, which scales the second term and can
effectively trade-off between reconstruction quality and encoding efficiency (Higgins et al., 2022).
When β is small, the bottleneck is relatively unconstrained, leading to large capacity and low
encoding efficiency. When β is larger, the constraint on the latent bottleneck gets stronger, and its
size tends to be small. The varying capacity of latent space provided by β-VAE is highly correlated
with lossy compression. Therefore, β-VAE is an optimal model to implement RDT.

Lβ−V AE(θ, ϕ) = −Ez∼qϕ(z|x)(logpθ(x|z)) + βDKL(qϕ(z|x)||pθ(z))

3 Three principles of RDT and their implications on working
memory

Efficient data compression accounts for essential aspects of working memory. Several studies have
examined three principles of RDT and their implications on working memory performance.
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Figure 3: Conceptual framework of VAE. A VAE consists encoder, sampler, and decoder. Input is
first mapped to a probability distribution p(zi|xi) by the encoder. Then a latent vector sampled
from the distribution is stored. During retrieval, a reconstructed input is generated based on the
likelihood of the hidden vector p(zi|xi).

Figure 4: Prior knowledge principle. (A) Rate-distortion curves of two stimulus variance conditions.
(B) Different prior distributions (uniform and Gaussian) and output distributions of x0.

3.1 Prior knowledge principle
The prior knowledge principle states that efficient memory reconstruction must use knowledge of
statistics of the to-be-remembered item. Thus, if people‘s memory system is similar to the rate-
distortion model, their performance in memory tasks should be influenced by the prior knowledge
in two ways:

• the performance should be worse with increasing entropy in the prior distribution

• the reconstruction should be biased toward the mean of the prior distribution

3.1.1 Prior distribution

Higher entropy leads to worse performance. Bates et al. (2019) presented stimuli of plant-like
objects that varied by the width of their leaves, which were from distributions with different entropy.
The participants were supposed to reconstruct the leave-width of stimulus. Bates et al. found that
the number of correct responses with decreasing entropy was higher (Figure 5B). Stimuli with low
probability in prior knowledge are more demanding to reconstruct than familiar ones.
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Figure 5: Entropy of prior distribution affects recall performance. (A) Stimuli of artificial potted
plants used by Bates et al. (2019) Leaf angle varies along the vertical axis, while leaf width varies
along the horizontal axis. (B) Average percent correct for memory task as a function of trial
number for different prior stimulus distributions (uniform distribution and Gaussian distribution
with various means and variances) (Bates and Jacobs, 2020).

Nagy et al. (2020) studied the effect of prior distribution in a real-life chessboard setting. They
presented game- and random-configurations to subjects with different chess skills and β-VAE
models trained on a different number of games (Figure 6). They found the increased expertise
contributed explicitly to the enhancement of recall performance in real-game configurations but
had no significant influence on the performance of random configurations. A potential explanation
is that prior knowledge of real chess games affects the efficient compression of data.

3.1.2 Context

Recall can be biased towards prior knowledge. Nagy et al. (2020) tested the effect of contextual
information on memory recall (Figure 7). In the human experiment, subjects were shown ambiguous
hand-drawn sketches of objects (e.g., inputs shown in Figure 7A) and were asked to reproduce
the images after a delay. Before recalling, they saw a category name, which provided one possible
interpretation of the image as context. The authors found that the reconstruction of images was
biased toward the contextual category. The simulation was conducted on conditional models on
sketches belonging to each label. Similar to results on human subjects, reconstructions from the
conditional posterior resulted in systematic distortions of the original image consistent with the
provided label.

3.2 Limited capacity principle
The limited capacity principle states that all finite systems have limits in processing and storage
capacities. Thus, the performance of human memory depends on the system’s capacity. The limited
capacity principle suggests at least two predictions on human memory. First, subjects with lower
working memory capacity should have worse recall performance. Second, the performance should
decrease with increasing stimuli due to allocating storage.
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Figure 6: Prior knowledge affects recall performance (Nagy et al., 2020). (A) Top, Chessboard
configurations from real-game settings. Bottom, reconstructions of the chessboards. Blue, purple,
and red indicate correct reconstruction, switched identity, and missed/false reconstruction. (B)
Same as A but from randomized settings. (C) Reconstruction accuracy by VAE models as a function
of the training set. (D) Reconstruction accuracy by human participants as a function of the chess
skill.

Figure 7: Context affects recall performance (Nagy et al., 2020). (A) Recall input with different
contexts. Top, The left one is reconstructed by a human subject in the ‘dumbbell’ context, while
the right one is reconstructed in the ‘eyeglasses’ context. Bottom, Same as top, but reconstructed
by model. (B) Quantitative changes in visual features (fraction of the length of the line in
reconstruction) with changing context.
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Figure 8: Capacity affects recall performance. (A) Average reward as a function of capacity
(Gershman, 2020), applied to data from Collins (2018). Each solid line shows the optimized models
for a particular set size (Ns = 3 or 6). The circles show data from human participants. (B) Changes
in β result in different reconstruction points on the rate-distortion curve (Nagy et al., 2020).

3.2.1 Capacity

Experimental evidence indicates that with more information rate, the memory trace can represent
finer details of the stimuli. Thus the reconstruction can be less distorted. Gershman (2020) examined
this using data from Collins (2018), which consists of 91 subjects performing a reinforcement learning
task. They found reward generally increases monotonically with the capacity, with values close to
the optimal trade-off curve. In Nagy et al. (2020) experiment, they manipulated the capacity of
sketch-VAE models via changing beta values. The distortion between input and output is getting
less with increasing rate.

3.2.2 Set-size

Set-size effects suggest decreases in memory performance with increases in the number of to-be-
remembered items, which has already been reported in many working memory experiments. In
Pratte (2020) visual experiment, subjects were supposed to remember square colors with varying
set sizes from two to ten items. They found that precision declined monotonically with set size
(Figure 9A). RDT predicts working memory distribution as a function of the number of items stored,
assuming that the total capacity is evenly divided among items. For instance, as illustrated in
Figure 9B, every item in the set-size six conditions shares the memory distribution for the set-size six
conditions (Bates et al., 2019). Bates and Jacobs (2020) used a β-VAE model to reconstruct data set
consisting of images with varying numbers of stimuli. The result is the same as on human subjects.
When less capacity is available, a model tries to “spread” its resources across the to-be-remembered
stimuli.

3.3 Task dependency principle
To efficiently compress the stimuli, memory systems must consider behavioral goals. The task
dependency principle implies that the allocation of mental resources should consider the informa-
tion’s value. For example, task-irrelevant features should be allocated minimal resources. Therefore
reconstruction of them should be more distorted than task-relevant features.

3.3.1 objective function

Bates and Jacobs (2020) used an extension decision layer to train β-VAE model in two conditions.
In leaf-width relevant condition, the model was penalized solely for errors in leaf width; in the
other condition, it was penalized solely for mistakes in leaf angle. As illustrated in Figure 10A,
models ignored task-irrelevant features in reconstruction as expected. Similarly, in Gazzaley et al.
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Figure 9: Set size affects recall performance. (A) Memory precision as a function of set size in
a visual memory experiment (Pratte, 2020). (B) Reconstruction distribution of one stimulus in
different set-size settings (Bates et al., 2019). (C) Estimated rate-distortion curves for each set-size
setting (Bates and Jacobs, 2020).

(2008), the human subjects’ recall performance on task-relevant stimuli is significantly better than
on task-irrelevant stimuli (Figure 10B).

4 Discussion
So far, I have focused on the framework of RDT and examined its application to understanding
human memory characteristics by comparing human subjects’ performance and implementation
models β-VAE.

What is the role of RDT in learning the nature and limits of human memory? According to
Marr (1982), there are three levels of cognitive processing: the computational level, the algorithmic
level, and the implementation level. These levels represent a gradient from the internal (neural
mechanisms) to the external layer (the principles of the system’s behavior). RDT serves as a
theoretical framework for understanding human memory at a computational level (Sims, 2016). It
regards human memory as a principled, capacity-limited system and provides explanations at a
behavioral level. Moreover, it also gives insight into the neural implementation levels.

4.1 RDT in computational neuroscience
How does the brain realize RDT in neural activity? An impressive amount of experimental evidence
has suggested that neurons encode sensory information in an efficient coding strategy (Borst and
Theunissen, 1999; Lewicki, 2002; Olshausen and Field, 2004; Smith and Lewicki, 2006; Deneve
and Chalk, 2016; Chalk et al., 2018). This strategy indicates that sensory systems, given internal
constraints, encode maximal information from inputs by adapting neural coding to the statistical
structure of the environment. The cost of the neural code to represent a stimulus is inversely
proportional to the frequency of the stimulus in the environment.

Another critical question is, what leads to the constraint in neural systems? Zénon et al. (2019)
has proposed two resources: information capacity and energetic demands. The informational con-
straint posits that increasing information demand decreases the capacity for other parallel processes.
The energetic constraint postulates total brain energetic consumption is constant (Sokoloff et al.,
1955; Raichle and Gusnard, 2002; Lennie, 2003), so the metabolic cost of neural activity in one
brain area should influence total capacity in other brain areas. These two hypotheses suggest a
local and global perspective of understanding the constraints in neural coding and require further
studies.
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Figure 10: The goal of tasks affects memory representation. (A) Image reconstructions of target
images when models were penalized for error in leaf-width (left column) or leaf-angle (right column)
(Bates and Jacobs, 2020). (B) Recognition accuracy for task-relevant and task-irrelevant stimuli,
applied to data from Gazzaley et al. (2008).

4.2 RDT in a broader picture of learning
Memory serves a central role in learning. To make adaptive decisions, one must refer to past
experiences and evaluate the outcomes of different actions (Shohamy and Daw, 2015). These two
processes can affect each other remarkably. For example, different learning procedures (e.g., free
recall v.s. forced choice recognition) might change stored information (Breen, 1993). One possible
explanation for this is the complexity of learning tasks (the difficulty of learning materials, ways of
memory retrieval, time limits, etc.) might change subjects’ usage of the distortion function, which
represents their understanding of mistakes (Sims, 2016; Hamidi et al., 2022).

These results suggested there are multiple constraints in learning. However, how these constraints
interplay with each other remains to be discovered. A possible way to solve it is by combining
RDT with reinforcement learning (Gershman, 2020; Lai and Gershman, 2021), therefore inducing
different constraints in the framework.
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